Cinnamaldehyde Derivatives Inhibit Coxsackievirus B3-Induced Viral Myocarditis
نویسندگان
چکیده
The chemical property of cinnamaldehyde is unstable in vivo, although early experiments have shown its obvious therapeutic effects on viral myocarditis (VMC). To overcome this problem, we used cinnamaldehyde as a leading compound to synthesize derivatives. Five derivatives of cinnamaldehyde were synthesized: 4-methylcinnamaldehyde (1), 4-chlorocinnamaldehyde (2), 4-methoxycinnamaldehyde (3), α-bromo-4-methylcinnamaldehyde (4), and α-bromo-4-chlorocinnamaldehyde (5). Neonatal rat cardiomyocytes and HeLa cells infected by coxsackievirus B3 (CVB3) were used to evaluate their antiviral and cytotoxic effects. In vivo BALB/c mice were infected with CVB3 for establishing VMC models. Among the derivatives, compound 4 and 5 inhibited the CVB3 in HeLa cells with the half-maximal inhibitory concentrations values of 11.38 ± 2.22 μM and 2.12 ± 0.37 μM, respectively. The 50% toxic concentrations of compound 4 and 5-treated cells were 39-fold and 87-fold higher than in the cinnamaldehyde group. Compound 4 and 5 effectively reduced the viral titers and cardiac pathological changes in a dose-dependent manner. In addition, compound 4 and 5 significantly inhibited the secretion, mRNA and protein expressions of inflammatory cytokines TNF-α, IL-1β and IL-6 in CVB3-infected cardiomyocytes, indicating that brominated cinnamaldehyde not only improved the anti-vital activities for VMC, but also had potent anti-inflammatory effects in cardiomyocytes induced by CVB3.
منابع مشابه
Coxsackievirus B3 infection induced viral myocarditis by regulating the expression pattern of chemokines in cardiac myocytes.
Viral myocarditis is a common cardiovascular disease, which has greatly threatened human health. However, up to now, the pathogenesis of viral myocarditis has been unclear, which leads to the lack of its effective treatments. To investigate the role of chemokines in pathogenesis of viral myocarditis, mRNA expression for a panel of 19 chemokines detected by RT-PCR in myocardial tissue of BALB/c ...
متن کاملComparison between RT-PCR, NASBA and RT-LAMP Methods for Detection of Coxsackievirus B3
Viral myocarditis is a moderate disease, but it sometimes causes progressive cardiac disorder. Many different viruses have been considered as the agent of viral myocarditis, but Coxsackievirus of the B group, in particular of the Coxsackievirus B3 (CVB3), is more than fifty percent of cases of viral myocarditis. CVB3 is a positive single-stranded RNA virus and a member of the genus Enterovirus ...
متن کاملRT-PCR Detection of Coxsackievirus B3: A Viral Myocarditis
Backgrounds and Aims: Coxsakievirus B3 (CVB3), one of the six Coxsakievirus B serotypes, is a member of the Enterovirus genus within the Picornaviridae family. CVB3 is an important pathogen of viral myocarditis, which accounts for more than 50% of viral myocarditis cases. The genome of CVB3, like that of other Entroviruses, is a single-stranded, sense, polyadenylated RNA molecule with 7400 nucl...
متن کاملAntiviral Activity of Chrysin Derivatives against Coxsackievirus B3 in vitro and in vivo
Chrysin is a 5,7-dihydroxyflavone and was recently shown to potently inhibit enterovirus 71 (EV71) by suppressing viral 3C protease (3C(pro)) activity. In the current study, we investigated whether chrysin also shows antiviral activity against coxsackievirus B3 (CVB3), which belongs to the same genus (Enterovirus) as EV71, and assessed its ability to prevent the resulting acute pancreatitis and...
متن کاملCoxsackievirus B3 protease 3C induces cell death in eukaryotic cells
Abstract: Coxsackievirus B3 (CVB3) is the most common agent known to cause viral myocarditis. The viral genome encodes a single polyprotein that is cleaved to produce several proteins by virally encoded proteases. Most of this proteolytic processing is catalyzed by a cysteine protease called 3C. The 3C protease plays major role in viral replication and cellular damage. To understand the mecha...
متن کامل